climate change prediction

IISER Bhopal scientists develop model to predict extended climate anomalies in India

The model predicts the temperature of an Indian Summer Season (March-April-May) using weather data from the previous winter and has also helped in understanding the relationships among various weather parameters.

Indian Institute of Science Education and Research (IISER) Bhopal Scientists have developed a statistical model that can predict summer temperatures and extended climate anomalies in India, using the weather data from the preceding winter.

Research groups from all over the world are involved in developing models for climate prediction in different time (months/years) and spatial (regional/global) scales using known data from past and scientific understanding about the physical and dynamic processes of climate evolution.

The research was led by Pankaj Kumar, Assistant Professor, Department of Earth and Environmental Sciences, IISER Bhopal. The model development and results of the prediction studies have been recently published in the International Journal of Climatology, in a paper co-authored by Pankaj Kumar and his research scholar Aditya Kumar Dubey.

“We have used a multi-linear statistical technique called Canonical Correlation Analysis to predict summer temperatures and understand the relationships among the various weather parameters”, explained Aditya Kumar Dubey, Research Scholar.

The researchers have used parameters such as the sea surface temperature, sea level pressure, zonal wind, precipitation, and maximum, minimum, and average air temperatures from the previous winter, to predict the summer temperatures throughout India.

Highlighting the need of this research, Dr. Pankaj Kumar, Assistant Professor, Department of Earth and Environmental Sciences, IISER Bhopal, said, “With climate change and global warming being increasingly recognized as a threat to the ecosystem, socio-economy and, perhaps, life itself, it is important to understand and be able to predict seasonal patterns for better preparedness.”

“We have found that the summer temperature has seen a significant increase, especially in North India, during recent decades,” said the lead researcher.

The researchers have also shown that the summer temperature predictability is better for South India than North, due to the former’s proximity to the ocean and the greater impact of the sea surface temperature on summer heat in the subcontinent.

Because of the effect of the sea surface temperature, South India has been found to be warmer during El-Niño years and cooler during La-Nina. The North Indian summer, on the other hand, is affected by the high pressure and circulation systems at upper levels (~5.5-12.5 Km), which form a heat dome and lead to adiabatic heating, thereby pushing up the summer temperature irrespective of the El-Niño or La-Nina effect.

The model by the IISER team has been able to predict MAM temperatures a season ahead.  The scientists have considered the role of all possible parameters in developing the predictive model and plan to elucidate the mechanisms behind their interplay.

“Timely, actionable and reliable climate prediction is crucial for policy making. to help manage development opportunities and risks, and for adaptation and mitigation activities,” said Dr. Kumar on the importance of work such as theirs on predict

Leave a Reply

Your email address will not be published. Required fields are marked *