/dq/media/post_banners/wp-content/uploads/2021/02/Photo-1-HPE-Spaceborne-Computer-2.jpg)
Hewlett Packard Enterprise (HPE) announced it is accelerating space exploration and increasing self-sufficiency for astronauts by enabling real-time data processing with advanced commercial edge computing in space for the first time. Astronauts and space explorers aboard the International Space Station (ISS) will speed time-to-insight from months to minutes on various experiments in space, from processing medical imaging and DNA sequencing to unlocking key insights from volumes of remote sensors and satellites, using HPE’s Spaceborne Computer-2 (SBC-2), an edge computing system said a statement from the company.
Spaceborne Computer-2 is scheduled to launch into orbit on the 15th Northrop Grumman Resupply Mission to Space Station (NG-15) on 20 February and will be available for use on the International Space Station for the next 2-3 years. The NG-15 spacecraft has been named “SS. Katherine Johnson” in honor of Katherine Johnson, a famed Black, female NASA mathematician who was critical to the early success of the space program.
Breaking Barriers to Achieve Reliable Computing in Space
The upcoming launch of Spaceborne Computer-2 builds on the proven success of its predecessor, Spaceborne Computer, a proof-of-concept that HPE developed and launched in partnership with NASA in 2017 to operate on the International Space Station (ISS) for a one-year mission. The goal was to test if affordable, commercial off-the-shelf servers used on earth, but equipped with purposefully-designed software-based hardening features, can withstand the shake, rattle and roll of a rocket launch to space, and once there, seamlessly operate on the ISS.
The proof-of-concept addressed the need for more reliable computing capabilities on the ISS, or low Earth orbit (LEO), that were previously impossible to achieve due to the ISS’s harsh environment of zero gravity and high levels of radiation that can damage IT equipment required to host computing technologies.
Additionally, gaining more reliable computing on the ISS is just the first step in NASA’s goals for supporting human space travel to the Moon, Mars and beyond where reliable communications is a mission critical need.
Spaceborne Computer-2 will also come equipped with graphic processing units (GPUs) to efficiently process image-intensive data requiring higher image resolution such as shots of polar ice caps on earth or medical x-rays. The GPU capabilities will also support specific projects using AI and machine learning techniques. The combined advancements of Spaceborne Computer-2 will enable astronauts to eliminate longer latency and wait times associated with sending data to-and-from earth to tackle research and gain insights immediately for a range of projects, including:
Real-time monitoring of astronauts’ physiological conditions by processing X-Ray, sonograms and other medical data to speed time to diagnosis in-space.
Making sense of volumes of remote sensor data: There are hundreds of sensors that NASA and other organizations have strategically placed on the ISS and on satellites, which collect massive volumes of data that require a significant amount of bandwidth to send to earth to process. With in-space edge computing, researchers can process on-board image, signal and other data related to a range of events, such as:
- Traffic trends by having a wider look at number of cars on the road and even in parking lots
- Air quality by measuring level of emissions and other pollutants in the atmosphere
- Tracking objects moving in space and in the atmosphere from planes to missile launches
/dq/media/agency_attachments/UPxQAOdkwhCk8EYzqyvs.png)
Follow Us